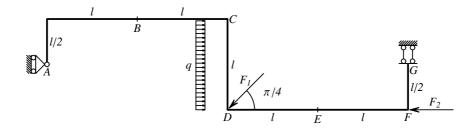

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica III - Meccanica Razionale (Prof.ssa F. Passarella) 14/07/2006

1. In un sistema di riferimento $Ox_1x_2x_3$, assegnata la seguente distribuzione di massa, avente densità costante e pari a μ_0 e giacente nel piano Ox_1x_2 , determinarne le coordinate del baricentro, i momenti d'inerzia relativi agli assi coordinati e il momento d'inerzia relativo alla bisettrice del primo e del terzo quadrante.



2. Dato il seguente campo di forze piano e posizionale

$$\mathbf{F}(x_1, x_2) = \frac{3x_1 + 2x_2^2}{\sqrt{x_1 + x_2^2}} \,\mathbf{i}_1 + \frac{2x_1x_2}{\sqrt{x_1 + x_2^2}} \,\mathbf{i}_2,$$

valutarne il dominio, stabilire se esso è conservativo e, in tal caso, determinarne il potenziale. Calcolare poi il lavoro compiuto lungo la curva di equazione $x_1 = 1 - x_2^2$ dal punto di coordinate A = (1,0) al punto di coordinate B = (0,-1).

- 3. Nel piano verticale Ox_1x_2 , un'asta rigida OA di densità $\mu(x_1, x_2) = \mu_0 \left(1 + \frac{x_1^2 + x_2^2}{l^2}\right)$ e lunghezza l ruota intorno all'asse orizzontale x_3 , incernierata senza attrito con la sua estremità O nell'origine del sistema di riferimento. Oltre alla reazione vincolare ed alla forza peso, sul sistema agisce la forza elastica $\mathbf{F}_k = k \left(\bar{A} A \right)$, con \bar{A} proiezione di A, istante per istante, sull'asse x_1 . Si scriva l'equazione pura del moto, si individuino le eventuali posizioni di equilibrio, nell'ipotesi in cui risulti 9mg = 8kl (con m si è indicata la massa dell'asta), e si determini la reazione vincolare.
- 4. Nel piano verticale Ox_1x_2 , un punto materiale P di massa m è vincolato a muoversi su una guida circolare liscia di equazione $x_1^2 + x_2^2 2Rx_1 2Rx_2 2R^2 = 0$. Oltre alla reazione vincolare e alla forza peso, sul punto P agiscono la forza elastica $\mathbf{F}_1 = k(\bar{P} P)$ e la forza $\mathbf{F}_2 = \lambda (A P)$, con \bar{P} proiezione, istante per istante, del punto P sull'asse x_1 ed A = (0, 0, R). Si determini l'equazione pura del moto e si individuino le eventuali posizioni di equilibrio, nell'ipotesi in cui risulti $\lambda = 0$ e $mg = (\sqrt{3} 1)kR$. Infine, si determini la reazione vincolare ed, eventualmente, la si valuti all'equilibrio.
- 5. Ricorrendo al PLV, valutare la reazione esplicata dal vincolo in A ($|\mathbf{F}_1| = |\mathbf{F}_2| = F$).

